Lyme borreliosis is a tick-borne illness caused by the spirochete Borrelia burgdorferi, harbored primarily by small rodents, and transmitted by ticks in the genus Ixodes. It was first recognized clinically in the 1970s, in a cluster of juvenile arthritis cases in Connecticut (1). Over the last twenty five years, Lyme disease has been increasing steadily in the United States, both in case numbers and in geographic distribution. As noted in the other articles in this issue, Lyme disease has started to show a similar pattern in Canada. In the United States, there were over 30,000 cases reported to the Centers for Disease Control and Prevention (CDC) in 2012, making it the 7th most common reportable condition. The increasing numbers of cases is thought to have resulted from expanding deer populations and suburban growth that have led to abundant reservoir hosts, more ticks, and greater opportunities for exposure in humans (2). It is important to note that the observed trends for Lyme disease emergence are similar for several other tick-borne diseases that share similar ecologies, including anaplasmosis, babesiosis, ehrlichiciosis, and Powassan disease. Symptoms of Lyme disease range from an erythema migrans rash, early in the course of infection, to neuritis (e.g., facial palsy), carditis, and arthritis in later, disseminated stages of illness. Prompt treatment with 2-4 weeks of oral doxycycline results in symptomatic cure of the great majority of patients. Nevertheless, a subset of patients, especially those diagnosed and treated in later stages of illness, may have persistent fatigue, muscle aches, short-term memory problems, and other nonspecific symptoms. Consequently, one of the highest priority research needs in the field of Lyme disease is to elucidate the specific cause or causes of symptoms in these patients and to determine the safest and most effective treatment options. This question is the focus of several current or recently published research studies in humans and non-human primates that are evaluating treatment response, clinical outcome, and the possibility of spirochete persistence following treatment (3-5). Another very high priority research need is for improved diagnostics. The currently validated diagnostic tests in common use for Lyme disease are all serologic tests that rely on a detectable antibody response. Consequently, these tests have limited value early in infection or in patients who have had prior infection, depending on how long ago the infection occurred. Some of the more promising research that is ongoing in this area focuses on the identification of direct diagnostic targets. These may either be nucleic acids or low molecular weight cellular metabolites that are indicators of active infection or a specific host-mediated response to infection. One last highly critical research need worth noting is for the development and evaluation of safe and effective prevention and control tools and methods. This topic will be discussed further below. In addition to these research needs, other critical needs must be addressed in order to establish and maintain an effective public health response. These include 1.) an accurate understanding of disease distribution and risk; 2.) an awareness of the disease among the public at risk and knowledge about how to protect themselves; 3.) informed healthcare providers who can recognize the disease and provide early and accurate diagnosis and treatment; 4.) validated prevention and control practices; and 5.) effective multi-level collaboration toward the goal of prevention. The remaining sections of this paper briefly discuss each of these topics.
Read full abstract