Despite a well-documented increase in the prevalence of subclinical atherosclerosis in patients with steatosis, the relationship among steatosis and atherosclerosis, specific atherosclerotic sites, multiple-site atherosclerosis, and cardiovascular risk prediction is incompletely understood. We studied the relationship among steatosis, atherosclerosis site, multiple-site atherosclerosis, coronary artery calcification (CAC), and 10-year Framingham Risk Score (FRS) in 2,554 patients with one or more cardiovascular risk factors (CVRF), free of cardiovascular events and other chronic liver diseases, and drinking less than 50 g alcohol/day. All patients underwent arterial ultrasound (carotid [CP] and femoral [FP] plaques defined as intima-media thickness (IMT) > 1.5 mm), coronary computed tomography scan (severe CAC if ≥ 100), 10-year FRS calculation, and steatosis detection by the fatty liver index (FLI, present if score ≥ 60). Patients with steatosis (36% of total) had higher prevalence of CP (50% versus 45%, P = 0.004) and higher CAC (181 ± 423 versus 114 ± 284, P < 0.001) but similar prevalence of FP (53% versus 50%, P = 0.099) than patients without steatosis. Steatosis was associated with carotid IMT and CAC, but not with FP, independent of age, diabetes, hypertension, and tobacco use (P < 0.001). Fifty-three percent of patients had at least 2-site atherosclerosis and steatosis was associated with at least 2-site atherosclerosis independent of age and CVRF (odds ratio = 1.21, 95% confidence interval 1.01-1.45, P = 0.035). Sixty-four percent of patients with steatosis had a FRS score of 10% or more. FLI was associated with FRS beyond the CVRF or the number of atherosclerosis sites (P < 0.001). Adding FLI to CVRF predicted an FRS greater than or equal to 10% better than CVRF alone (area under the receiver operating characteristic curve = 0.848 versus 0.768, P < 0.001). Conclusion: Steatosis is associated with carotid and coronary, but not femoral atherosclerosis, and with cardiovascular mortality risk. The multiple-site involvement and quantitative tonic relationship could reinforce the prediction of cardiovascular mortality or events over classical CVRF or imaging-based detection of atherosclerosis.