The proteins and polar lipids present in milk fat globule membrane (MFGM) fragments are gaining attention for their technological and nutritional properties. These MFGM fragments are preferentially enriched in side streams of the dairy industry, like butter serum, buttermilk, and whey. The objective of this study was to recover MFGM fragments from whey by tangential filtration techniques. Acid buttermilk cheese whey was chosen as a source for purification by tangential membrane filtration because it is relatively rich in MFGM-fragments and because casein micelles are absent. Polyethersulfone and cellulose acetate membranes of different pore sizes were evaluated on polar lipid and MFGM-protein retention upon filtration at 40°C. All fractions were analyzed for dry matter, ash, lipids, proteins, reducing sugars, polar lipid content by HPLC, and for the presence of MFGM proteins by sodium dodecyl sulfate-PAGE. A fouling coefficient was calculated. It was found that a thermocalcic aggregation whey pretreatment was very effective in the clarification of the whey, but resulted in low permeate fluxes and high retention of ash and whey proteins. By means of an experimental design, the influence of pH and temperature on the fouling and the retention of polar lipids (and thus MFGM fragments), proteins, and total lipids upon microfiltration with 0.15μM cellulose acetate membrane was investigated. All models were highly significant, and no outliers were observed. By increasing the pH from 4.6 to 7.5, polar lipid retention at 50°C increased from 64 to 98%, whereas fouling of the filtration membrane was minimized. A 3-step diafiltration of acid whey under these conditions resulted in a polar lipid concentration of 6.79g/100g of dry matter. As such, this study shows that tangential filtration techniques are suited for the purification of MFGM fragments.
Read full abstract