In order to solve the problems of high production cost and complex control of the inverted arch of an unsupported prestressed concrete composite slab, a flange truss high-ductility concrete composite slab floor is proposed to change the structure and pouring material to meet the requirements of no support during construction. The crack distribution and bending performance of the flange truss high-ductile concrete composite slab floor (CRHDCS) under different structures are clarified through the test and numerical analysis of four different rib plate structure floors. According to the analysis results, the calculation formulas of the cracking moment and short-term stiffness before cracking are modified, and the equivalent short-term stiffness formula of a single web member of the “V” truss to this kind of bottom plate is established. The results show that, unlike the short-term stiffness-change law of typical concrete composite slabs after cracking, the short-term stiffness of the designed bottom plate in this paper includes a short-term increase stage. The numerical simulation results are the same as the experimental ones; the maximum error is 10%. The maximum errors between the modified cracking moment and the short-term stiffness calculation formula are 6% and 8%, respectively. The influence rates of removing flange plate, truss-inverted binding, and adding rib plate on the cracking bending moment of foundation structure are −81.5%, 11.0%, and 22.2% respectively, and the influence rates on short-term stiffness are −87.6%, −1.5%, and 37.5% respectively.
Read full abstract