A flat-plate turbulent boundary layer (TBL) is experimentally subjected to a family of 22 favourable–adverse pressure gradients (FAPGs) using a ceiling panel of variable convex curvature. We define FAPGs as a sequence of streamwise pressure gradients in the order of favourable followed by adverse, similar in sequence to the pressure gradients over the suction side of an airfoil. For the strongest pressure gradient case, the acceleration parameter, $K$ , varied spatially from $6 \times 10^{-6}$ to $- 4.8 \times 10^{-6}$ . The adverse pressure gradient (APG) region of this configuration is studied using particle image velocimetry in the streamwise–wall-normal plane. The statistics of the APG TBL show that the upstream favourable pressure gradient (FPG) exerts a strong and lasting downstream influence, and that the rapid spatial changes in the pressure gradients imposed cause an internal boundary layer to grow within the TBL for 15 of the cases studied. The internal layer typically occupies 20 $\%$ of the boundary layer thickness and dominates the boundary layer response, containing the peak turbulent production, peak strength and population of vortices, and most of the spectral energy content of the flow. The outer layer, on the other hand, develops in the APG region without considerable changes to the state dictated by the upstream FPG. These trends are in contrast to APG TBLs that originate from a zero pressure gradient region, where the outer/wake region is known to dominate TBL response. The observed changes are quantified across the family of FAPGs imposed.
Read full abstract