Intrinsic viscosity provides insight to molecular structure and interactions in solution. A new microchip method is described for fast and accurate measurements of viscosity and intrinsic viscosity of polymer and biopolymer solutions. Polymer samples are diluted with solvent in the microfluidic chip by imposing pressure gradients across the channel network. The concentration and flow dilutions of the polymer sample are calculated from the fluorescent signals recorded over a range of dilutions. The viscosities at various polymer dilutions are evaluated using mass and momentum balances in the pressure-driven microchannel flow. The technique is particularly important to many chemical, biological, and medical applications where sample is available in very small quantities. The intrinsic viscosity experiments were performed for three classes of polymer solutions: (a) poly(ethylene glycol), polymers with linear hydrocarbon chains; (b) bovine serum albumin, biopolymer chains with hydrophobic and hydrophilic amino acids, and (c) DNA fragments, biological macromolecules with double-stranded polymeric chains. The measured values of intrinsic viscosity agree remarkably well with the available data obtained using different methods. The data exhibit power law behavior for molecular weight as described by the Mark-Houwink-Sakurada equation. Experiments were performed to understand the effect of solvent quality and salt concentration on molecular conformations and the intrinsic viscosity of the polymers. This method offers a new way to study the conformational changes in proteins and DNA solutions in various buffer conditions such as pH, ionic strength, and surfactants. The effects of shear rate in the microchannel and mixing time on the accuracy and limitation of the measurement method are discussed.
Read full abstract