Currently, many virtual simulation design studies of compression pants do not consider pressure distribution and human body characteristics. Therefore, this study aimed to optimize the simulation design accuracy of compression pants by investigating female body characteristics to improve the pressure distribution and enhance comfort. Firstly, we divided the body part features into flexible and rigid parts, performed compression relationship analysis between the material and the body, and collected qualitative and quantitative data related to the potential influencing factors. Subsequently, by conducting correlation analysis of the data, a pressure prediction model was established to address the pressure value errors in the simulation data. The research results showed that there was a significant difference between the real and virtual pressures in the flexible parts of the female body, and that the real pressure was closely related to the elasticity and thickness properties of the material. By optimizing virtual pressure values, the consistency between the virtual pressure and real test results can be significantly improved. The accurate prediction and optimization of pressure values can lead to the reduction of material waste and energy consumption during the manufacturing process.
Read full abstract