Steam ejectors are important energy-saving equipment for solar thermal energy storage; however, a numerical simulation research method has not been agreed upon. This study contributes to a comprehensive selection of turbulence models, near-wall treatments, geometrical modeling (2-D and 3-D), solvers, and models (condensation and ideal-gas) in the RANS equations approach for steam ejectors through validation with experiments globally and locally. The turbulence models studied are k-ε Standard, k-ε RNG, k-ε Realizable, k-ω Standard, k-ω SST, Transition SST, and linear Reynolds Stress. The near-wall treatments assessed are Standard Wall Functions, Non-equilibrium Wall Functions, and Enhanced Wall Treatment. The solvers compared are pressure-based and density-based solvers. The root causes of their distinctions in terms of simulation results, applicable conditions, convergence, and computational cost are explained and compared. The complex phenomena involving shock waves, choking, and vapor condensation captured by different models are discussed. The internal connections of their performance and flow phenomena are analyzed from the mechanism perspective. The originality of this study is that both condensation and 3-D asymmetric effects on the simulation results are considered. The results indicate that the k-ω SST non-equilibrium condensation model coupling the low-Re boundary conditions has the most accurate prediction results, best convergence, and fit for the widest range of working conditions. A 3-D asymmetric condensation model with a density-based solver is recommended for simulating steam ejectors accurately.
Read full abstract