We perform variational Monte Carlo simulations of the single-band Hubbard model on the square lattice with both nearest (t) and next-nearest (t′) neighbor hoppings. Our work investigates the consequences of increasing hole doping on the instauration of stripes and the behavior of the superconducting order parameter, with a discussion on how the two phenomena affect each other. We consider two different values of the next-nearest neighbor hopping parameter, that are appropriate for describing cuprate superconductors. We observe that stripes are the optimal state in a wide doping range; the stripe wavelength reduces at increasing doping, until stripes melt into a uniform state for large values of doping. Superconducting pair–pair correlations, indicating the presence of superconductivity, are always suppressed in the presence of stripes. Our results suggest that the phase diagram for the single-band Hubbard model is dominated by stripes, with superconductivity being possible only in a narrow doping range between striped states and a nonsuperconducting metal.
Read full abstract