We have shown in the past decade, for the first time in a bivalve mollusc, detection, isolation, and purification of β-1,3 glucan binding protein (β-GBP) in the plasma of the marine mussel Perna viridis and demonstrated its role in a nonself-induced activation of plasma prophenoloxidase system. In this study, we present evidence for its ability to function as an opsonin during phagocytosis of trypsinized yeast cells by the hemocytes of P. viridis. The in vitro pretreatment of target cells (trypsinized yeast cells) with β-GBP enhanced the phagocytic response of hemocytes. Such β-GBP-mediated enhanced phagocytic response appeared to be dose dependent. This opsono-phagocytic response could be inhibited by the presence of laminarin (a polymer of β-1,3 glucans), glucose, as well as polyclonal antibodies raised against β-GBP. These observations clearly indicate that the plasma β-GBP can possibly recognize and bind to β-1,3 glucans on the surface of targets and facilitate hemocyte recognition processes possibly by forming a bridge between the hemocytes and the target, consequently leading to opsono-phagocytosis. These observations together with our earlier annotations indicate the multifunctional potential of plasma β-GBP in the marine mussel P. viridis.