Abstract
To evaluate the in vitro microbicidal activity against Acanthamoeba castellanii of a murine monoclonal anti-idiotypic antibody (KTmAb) and a synthetic killer mimotope (KP), which mimic a yeast killer toxin (KT) characterized by a wide spectrum of antimicrobial activity through interaction with specific cell wall receptors, mainly constituted by beta-glucans. Amoebicidal activity was investigated after incubation of trophozoites under different experimental conditions with laminarinase, KTmAb, KP and a scrambled decapeptide (SP). To confirm the specific interaction of KP with beta-glucans, the experiments were also carried out in the presence of laminarin (beta1-3-glucan) or pustulan (beta1-6-glucan); both glucan molecules were co-incubated with KP or SP. KTmAb and KP exhibited a time-dependent killing activity, in comparison with SP or heat-inactivated KTmAb; this activity was completely abolished by pre-incubation with laminarin, but not by pustulan. Notably, in vitro amoebicidal activity was observed in the presence of laminarinase, an enzyme that specifically hydrolyses beta-glucans. Furthermore, KP specifically inhibited the growth of Acanthamoeba on infected contact lenses and the remaining adherent KP-treated trophozoites appeared strongly damaged. The results indicate that the expression of beta1-3-glucan receptors in the cell membrane is probably modulated during cell growth of A. castellanii and is critical for the killing activity of KT-like molecules. Our data confirm the broad antimicrobial spectra of KTmAb and KP, emphasize the crucial role of beta1-3-glucan in microbial physiology and suggest the potential use of KTmAb and KP in the prevention and therapy of Acanthamoeba infections or in preventing Acanthamoeba contamination during storage of contact lenses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.