Dysfunction of the main inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is the underlying reason behind many neurological disorders including Alzheimer's and Huntington's diseases, autism spectrum disorders, anxiety, depression, hypertension, and cardiovascular diseases, among others. Here, we address neurotransmitter-induced alterations of synaptosomal and model membrane electrical properties for elucidating membrane-related biophysical mechanisms of neurological disorders. We focus on membrane surface characteristics of the pinched off nerve endings synaptosomes, which for decades have been a powerful tool in neurobiology. Microelectrophoretic measurements of GABA-treated negatively charged synaptosomes from rat cerebral cortex reveal lower negative zeta potential as a result of reduced electrical charge on the membrane surface at (1-4h) after isolation. Conversely, enhancement of the surface parameters of synaptosomes (17-22h) post isolation is obtained due to additional negatively exposed groups on the surface of the vesicles. The electrical properties of bilayer lipid membranes are probed by electrochemical impedance spectroscopy, reporting as light increase of the membrane electrical capacitance in the presence of GABA, likely related to membrane thinning and dielectric permittivity alterations. The neurotransmitter inhibits sodium-potassium as well as the total ATPase activity and slightly enhances magnesium-ATPase of native synaptic membranes. At low (pM) GABA concentrations the activity of acetylcholinesterase (AChE) in synaptic membranes increases. AChE inhibition is reported at higher GABA concentrations. The relation between the surface electrical properties of cells and the enzymatic activity of brain ATPases and AChE, as examined here, are expected to be helpful in the elucidation of membrane-mediated molecular mechanisms relevant to neurological disorders and conditions.
Read full abstract