Using a two-electrode voltage-clamp technique, we recorded end-plate currents (EPCs) in neuromuscular synaptic junctions of the murine diaphragm upon rhythmic stimulation of the n. phrenicus with frequencies of 7, 20, 50, 70, and 100 sec−1. Parameters of EPC series were analyzed against the background of the action of a mobilizer of intracellular calcium, ryanodine (0.5 μM), after the loading of terminals by 1.2 mM BAPTA (calcium buffer with rapid dynamics of binding of calcium), and upon the action of ryanodine in the presence of BAPTA. Under the action of ryanodine, the amplitude and quantum content of EPC within the plateau phase increased by 100 to 150% (P < 0.05). Loading with BAPTA evoked sharp decreases in the quantum content of unitary EPCs, the intensity of the initial facilitation, and the level of the EPC plateau in series within the entire range of stimulation frequencies used. Against the background of the action of BAPTA, the facilitatory effect of ryanodine increased; inhibitory effects of BAPTA with respect to the amplitude of unitary EPC and the level of the initial facilitation were completely compensated, whereas the level of EPC at the plateau stage increased to levels exceeding the control values by 50 to 70%. The ability of ryanodine to facilitate the transmitter (acetylcholine) release, which was enhanced in the presence of BAPTA, was completely neutralized by a blocker of L-type calcium channels, verapamil (5 μM). In the absence of BAPTA, verapamil did not influence the effects of ryanodine. We hypothesize that in the presence of BAPTA calcium channels of L type whose activity is resistive to the buffer action of BAPTA are disinhibited. The calcium current through L-type channels, perhaps, is capable of stimulating calcium release from the stores of nerve terminals and, as a consequence, of intensifying the facilitatory effect of ryanodine on the release of acetylcholine. After verapamil-induced blockade of this current, BAPTA demonstrates the ability to prevent the facilitatory effect of ryanodine on the transmitter release.
Read full abstract