Ethnopharmacological relevancePeriplaneta americana is a medicinal insect that has been applied to promote blood circulation and remove blood stasis based on traditional Chinese medicine (TCM) for a long time. Its modern preparation, Xinmailong injection, was adopted for the treatment of congestive heart failure (CHF). The bioactive constituents of P. americana and their correlation with its traditional uses need further investigation. Aim of the studyThis study aimed to elucidate the N-acetyldopamine (NADA) oligomers from P. american, determine their spatial distribution, and investigate their anti-inflammatory and vasorelaxant effects to provide scientific evidence supporting the clinical use of this medicinal insect. Material and methodsNADA oligomers were isolated from the CH2Cl2: CH3OH (2:1) extract of P. americana, through sequential chromatographic methods including silica gel, Sephadex LH-20, preparative HPLC, and chiral-phase separation. Their structures were determined by HRESIMS, 1D and 2D NMR spectroscopic analysis, chiral resolution, and calculated electronic circular dichroism analysis. With the aid of atmospheric pressure scanning matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI), the isolated compounds in a spatial profile within P. americana were identified. NO production was measured to assess anti-inflammatory activity. Vasorelaxant activity assessments were performed on the norepinephrine-precontracted 3rd-order mesenteric arteries. ResultsSeven new NADA trimers, peridopamines A−G (1−7), two new NADA dimers, peridopamines H and I (8 and 9), and six known NADA derivatives (10−15), were obtained from P. americana. The trimers and dimers were detected and showed similar pattern of distribution with accumulation in peripheral and rigid parts of P. americana, based on quasimolecular ion AP-SMALDI MS images of sections from the whole body and dissected areas of the insect. Furthermore, the anti-inflammatory and vasorelaxant effects of isolated compounds were investigated. Compounds 8 and 9 presented significant and moderate anti-inflammatory potentials, respectively. Compounds 8, 10, 12 and 15 possess significant vasorelaxant potentials at concentrations correlated with EC50 values of 6.7–23.7 μM. ConclusionFifteen NADA oligomers were isolated from P. americana. The distribution of these compounds was visualized by AP-SMALDI imaging experiments and NADA oligomers were mainly observed in peripheral parts. Bioassays showed that the tested compounds had anti-inflammatory and vasorelaxant activities, which indicated that NADA oligomers are active ingredients of this insect-based TCM and have potential for the treatment of cardiovascular disease.