At least 15% of patients who recover from acute severe acute respiratory syndrome coronavirus 2 infection experience lasting symptoms ("Long-COVID") including "brain fog" and deficits in declarative memory. It is not known if Long-COVID affects patients' ability to form and retain procedural motor skill memories. The objective was to determine the ability of patients with Long-COVID to acquire and consolidate a new procedural motor skill over 2 training days. The primary outcome was to determine difference in early learning, measured as the increase in correct sequence typing speed over the initial 11 practice trials of a new skill. The secondary outcomes were initial and final typing speed on days 1 and 2, learning rate, overnight consolidation, and typing accuracy. In this prospective, cross-sectional, online, case-control study, participants learned a sequential motor skill over 2 consecutive days (NCT05746624). Patients with Long-COVID (reporting persistent post-coronavirus disease 2019 [COVID-19] symptoms for more than 4 weeks) were recruited at the NIH. Patients were matched one-to-one by age and sex to controls recruited during the pandemic using a crowd-sourcing platform. Selection criteria included age 18-90 years, English speaking, right-handed, able to type with the left hand, denied active fever or respiratory infection, and no previous task exposure. Data were also compared with an age-matched and sex-matched control group who performed the task online before the COVID-19 pandemic (prepandemic controls). In total, 105 of 236 patients contacted agreed to participate and completed the experiment (mean ± SD age 46 ± 12.8 years, 82% female). Both healthy control groups had 105 participants (mean age 46 ± 13.1 and 46 ± 11.9 years, 82% female). Early learning was comparable across groups (Long-COVID: 0.36 ± 0.24 correct sequences/second, pandemic controls: 0.36 ± 0.53 prepandemic controls: 0.38 ± 0.57, patients vs pandemic controls [CI -0.068 to 0.067], vs prepandemic controls [CI -0.084 to 0.052], and between controls [CI -0.083 to 0.053], p = 0.82). Initial and final typing speeds on days 1 and 2 were slower in patients than controls. Patients with Long-COVID showed a significantly reduced overnight consolidation and a nonsignificant trend to reduced learning rates. Early learning was comparable in patients with Long-COVID and controls. Anomalous initial performance is consistent with executive dysfunction. Reduction in overnight consolidation may relate to deficits in procedural memory formation.
Read full abstract