Multi-planar external fixation has been used for the management of segmental tibial fractures with severe soft tissue injuries. However, fewer specialized studies have been reported. The primary aim of this study was to describe our experience of treating fractures of this type using the Taylor Spatial Frame and Ilizarov external fixation methods. We retrospectively analyzed 33 patients with segmental tibial fracture treated at our institution between January 2016 and December 2020. The patients were divided into double Taylor Spatial Frame (D-TSF) and Ilizarov groups based on the external fixation structure. Baseline demographic data included sex, age, injury side and cause, open or closed fracture, time from injury to surgery, complications, and external frame removal and fracture healing time. The hip-knee-ankle angle (HKA) was measured from preoperative, immediate postoperative, and final follow-up full-length X-rays of bilateral lower limbs. We determined the degree of deviation in the HKA by calculating the difference between the measured angle and the ideal value of 180°; the absolute value was used to assess recovery of the lower limb force line. At the final follow-up, Johner-Wruhs tibial fracture outcome criteria (J-W TFOC) were used to classify the postoperative function of the affected limb as excellent, good, moderate, or poor. Count data were analyzed with the chi-square test or Fisher's exact test; the Mann-Whitney U test was used for rank data. No statistically significant differences were observed between the two groups in terms of sex, age, side of injury, cause of injury, closed or open fracture, or time between injury and surgery, which indicates that the groups were comparable (p > 0.05). A statistically significant difference was observed in external frame removal and fracture healing time between the D-TSF and Ilizarov groups (36.24 ± 8.34 vs 45.42 ± 10.21 weeks, p = 0.009; 33.33 ± 8.21 vs 42.00 ± 9.78 weeks, p = 0.011). The Johner-Wruhs criteria were used to assess the function of the affected limb, the D-TSF group performed better in correcting the lower limb force line than the Ilizarov group. A statistically significant difference in terms of excellent ratings was observed between the two groups (18/2/1/0 vs 5/5/1/1, p = 0.010). Postoperative follow-up X-rays demonstrated a significant improvement in the HKA in both groups immediately after surgery and at the final follow-up compared to the angle before surgery. At the final follow-up, a statistically significant difference was observed in the degree of deviation in the HKA between the two groups (1.58° ± 0.84° vs 2.37° ± 1.00°, p = 0.023). The D-TSF treatment is associated with minimal secondary damage to soft tissue, a straightforward and minimally invasive procedure, multiplanar stable fracture fixation, and optimization of fracture alignment and lower limb force lines, therefore, it is highly effective therapeutic option for segmental tibial fracture.
Read full abstract