The multicenter randomized controlled trial Management of Myelomeningocele Study demonstrated that prenatal repair of open spina bifida by hysterotomy, compared with postnatal repair, decreases the need for ventriculoperitoneal shunting and increases the chances of independent ambulation. However, the hysterotomy approach is associated with risks that are inherent to the uterine incision. Fetal surgeons from around the world embarked on fetoscopic open spina bifida repair aiming to reduce maternal and fetal/neonatal risks while preserving the neurologic benefits of in utero surgery to the child. This study aimed to report the main obstetrical, perinatal, and neurosurgical outcomes in the first 12 months of life of children undergoing prenatal fetoscopic repair of open spina bifida included in an international registry and to compare these with the results reported in the Management of Myelomeningocele Study and in a subsequent large cohort of patients who received an open fetal surgery repair. All known centers performing fetoscopic spina bifida repair were contacted and invited to participate in a Fetoscopic Myelomeningocele Repair Consortium and enroll their patients in a registry. Patient data entered into this fetoscopic registry were analyzed for this report. Fisher exact test was performed for comparison of categorical variables in the registry with both the Management of Myelomeningocele Study and a post-Management of Myelomeningocele Study cohort. Binary logistic regression analyses were used to assess the registry data for predictors of preterm birth at <30 weeks' gestation, preterm premature rupture of membranes, and need for postnatal cerebrospinal fluid diversion in the fetoscopic registry. There were 300 patients in the fetoscopic registry, 78 in the Management of Myelomeningocele Study, and 100 in the post-Management of Myelomeningocele Study cohort. The 3 data sets showed similar anatomic levels of the spinal lesion, mean gestational age at delivery, distribution of motor function compared with upper anatomic level of the lesion in the neonates, and perinatal death. In the Management of Myelomeningocele Study (26.16±1.6 weeks) and post-Management of Myelomeningocele Study cohort (23.3 [20.2-25.6] weeks), compared with the fetoscopic registry group (23.6±1.4 weeks), the gestational age at surgery was lower (comparing fetoscopic repair group with the Management of Myelomeningocele Study; P<.01). After open fetal surgery, all patients were delivered by cesarean delivery, whereas in the fetoscopic registry approximately one-third were delivered vaginally (P<.01). At cesarean delivery, areas of dehiscence or thinning in the scar were observed in 34% of cases in the Management of Myelomeningocele Study, in 49% in the post-Management of Myelomeningocele Study cohort, and in 0% in the fetoscopic registry (P<.01 for both comparisons). At 12 months of age, there was no significant difference in the number of patients requiring treatment for hydrocephalus between those in the fetoscopic registry and the Management of Myelomeningocele Study. Prenatal and postnatal outcomes up to 12 months of age after prenatal fetoscopic and open fetal surgery repair of open spina bifida are similar. Fetoscopic repair allows for having a vaginal delivery and eliminates the risk of uterine scar dehiscence, therefore protecting subsequent pregnancies of unnecessary maternal and fetal risks.
Read full abstract