Previous studies have shown that gonadectomy in adult male rats influences the acquisition and performance of spatial and other working memory tasks that depend in part on the medial prefrontal cortex and its dopamine innervation. Stimulated by previous findings that gonadectomy alters dopamine axon density in not only medial but several other prefrontal fields, the present studies asked whether gonadectomy might also broadly impact dopamine-dependent prefrontal functions, and whether these effects bore any relation to hormone modulation of mesoprefrontal dopamine afferents. Specifically, control, gonadectomized, and gonadectomized rats given estradiol or testosterone propionate were tested on a series of operant tasks that together measured medial prefrontal functions of spatial working memory, impulsivity and extradimensional set shifting and orbital prefrontal functions of reversal learning/perseveration and motivation. Afterwards, animals were sacrificed, their bulbospongiosus muscles were removed and weighed, their brains were processed for immunocytochemistry for the dopamine-synthesizing enzyme tyrosine hydroxylase, and axon densities were measured in orbital and medial prefrontal fields. Statistical evaluations of group effects on behavior and regression analyses comparing individual performance with muscle weights and axon density measures revealed androgen-reversible effects of gonadectomy on acquisition of spatial working memory and extradimensional set shifting that were correlated with bulbospongiosus weight and medial prefrontal dopamine axon density, estrogen-sensitive influences of gonadectomy on motivation and response withholding that were correlated with bulbospongiosus weight but not with dopamine innervation, and still other prefrontal functions, i.e., impulsivity, reversal learning, that were insensitive to gonadectomy and unrelated to gonadectomy-induced changes in muscle weight or prefrontal dopamine innervation.