Depression and anxiety are common mental health disorders affecting thoughts, behaviors, and emotions. This study aimed to investigate the effect of the angiotensin II type I receptor blocker (AT1RB), valsartan, on menopause-induced depression and anxiety-like behaviors, and to elucidate possible mechanisms of action by measuring levels of nod-like receptor protein 3 (NLRP3), interleukin-1beta (IL-1β), brain-derived neurotrophic factor (BDNF), and oxidative stress in brain tissue. Thirty-two Wistar albino female rats were randomly divided into four groups (n = 8 per group): Control, AT1RB, OVX, and AT1RB + OVX. Following the bilateral ovariectomy (OVX) protocol, physiological saline was used as valsartan solvent, in a maximum volume of 0.4 mL, and valsartan was administered via intragastric gavage at a dose of 40 mg/kg/day. Depression and anxiety-like behaviors were assessed using the forced swimming test and open field test. Levels of oxidative stress markers, NLRP3, IL-1β, BDNF, and CREB were analyzed in the hippocampus and prefrontal cortex tissues. Behavioral tests indicated that depression and anxiety-like behaviors significantly increased in OVX rats (p < 0.01), while AT1RB treatment significantly reduced these behaviors (p < 0.05). In the hippocampus of OVX rats, oxidative stress (p < 0.01), NLRP3 (p < 0.05), and IL-1β (p < 0.01) levels were elevated, whereas BDNF levels were significantly decreased (p < 0.01). AT1RB treatment significantly improved oxidative stress parameters (p < 0.05) and BDNF levels (p < 0.01) but did not significantly affect the increased levels of NLRP3 and IL-1β in OVX rats. In conclusion, AT1RB has a therapeutic effect on menopause-induced depression and anxiety-like behaviors, likely by reducing oxidative stress and increasing BDNF production in the hippocampus.