In this paper we introduce a new type of preferential attachment network, the growth of which is based on the eigenvector centrality. In this network, the agents attach most probably to the nodes with larger eigenvector centrality which represents that the agent has stronger connections. A new network is presented, namely a dandelion network, which shares some properties of star-like structure and also a hierarchical network. We show that this network, having hub-and-spoke topology is not generally scale free, and shows essential differences with respect to the Barabási–Albert preferential attachment model. Most importantly, there is a super hub agent in the system (identified by a pronounced peak in the spectrum), and the other agents are classified in terms of the distance to this super-hub. We explore a plenty of statistical centralities like the nodes degree, the betweenness and the eigenvector centrality, along with various measures of structure like the community and hierarchical structures, and the clustering coefficient. Global measures like the shortest path statistics and the self-similarity are also examined.
Read full abstract