Preeclampsia (PE) is a hypertensive disorder of pregnancy associated with adverse maternal and fetal outcomes. While placental dysfunction is implicated in PE pathogenesis, the impact of PE on placental lipid metabolism and its potential sexual dimorphism remains poorly understood. We conducted a comprehensive analysis of term placentas from PE and normotensive pregnancies with male and female fetuses. Lipid profiles were quantified using mass spectrometry, and mRNA expression of genes involved in fatty acid oxidation, esterification, and transport was assessed using qPCR. Placentas from PE pregnancies exhibited elevated lipid levels, with male placentas showing a more pronounced increase in triacylglycerols, cholesteryl esters, and free cholesterol compared to female placentas. Gene expression analysis revealed sexually dimorphic alterations, with male PE placentas exhibiting upregulation of genes involved in fatty acid uptake, oxidation, and esterification, while female PE placentas showed a more complex response with both upregulation and downregulation of certain genes. Notably, peroxisomal fatty acid oxidation was upregulated in male PE placentas but suppressed in female PE placentas. Our findings reveal sexually dimorphic alterations in placental lipid metabolism in PE, suggesting that male placentas may be more vulnerable to lipotoxicity. These insights may have implications for understanding the pathogenesis of PE and developing sex-specific interventions to improve maternal and fetal outcomes.
Read full abstract