Colistin resistance in bacteria has become a significant threat to food safety and public health, and its development was mainly attributed to the plasmid-mediated mcr genes. This study aimed to determine the global prevalence and molecular characteristics of mcr-producing Salmonella enterica isolates. A total of 2279 mcr-producing Salmonella genomes were obtained from the public database, which were disseminated in 37 countries from five continents worldwide, including Asia, Europe, America, Australia, and Africa. Human samples (39.5%; 900/2279) were the predominant sources of mcr-producing Salmonella isolates, followed by foods (32.6%), animals (13.7%), and environment (4.4%). Furthermore, 80 Salmonella serotypes were identified, and Typhimurium and 1,4,[5],12:i:- were the predominant serotypes, accounting for 18.3% and 18.7%, respectively. Twenty mcr variants were identified, and the most common ones were mcr-9.1 (65.2%) and mcr-1.1 (24.4%). Carbapenems-resistance gene blaNDM-1 and tigecycline-resistance gene tet(X4) were identified in one isolate, respectively. Phylogenetic results indicated that mcr-producing Salmonella fell into nine lineages (Lineages I-IX), and Salmonella Typhimurium, 1,4,[5],12:i:- and 4,[5],12:i:- isolates from different countries were mixed in Lineages I, II and III, suggesting that international spread occurred. These findings underline further challenges for the spread of Salmonella-bearing mcr genes.
Read full abstract