Blood-based biomarkers were recently proposed as predictors of traumatic brain injury (TBI) outcomes. This would be a critical step forward since the majority of TBI events are mild and structural brain damage in this group may be missed by current brain imaging methods. We sought to determine the performance of early measurement of interleukin-10 (IL-10) to distinguish computed tomography (CT)-positive from negative patients with mild TBI. We designed a single-center prospective observational study, which enrolled consecutive patients classed with mild TBI according to Glasgow Coma Scale [GCS] scores and appearance of at least one clinical symptom. Serum IL-10 levels were measured <3 h post hospital admission. The performance of IL-10 levels in correctly classifying patients was evaluated. IL-10 levels were significantly higher in the group with positive CT scans (p < 0.001). With sensitivity set at 100%, the specificity of IL-10 was only 38.1%. However, the specificities of IL-10 for prediction of negative and positive cases increased to 59% and 49%, respectively, when both parameters were assessed within 90 min of admission. For mild TBI patients between 36 and 66 years, classification performance increased significantly at the 100% sensitivity level with a specificity of 93%. Our results suggest that IL-10 may be an easily accessible clinically useful diagnostic biomarker that can distinguish between mild TBI patients with and without structural brain damage with higher effectiveness when lower times of blood sampling are employed and patients are between 36 and 66 years of age.
Read full abstract