Filter swipe tests are used for routine analyses of actinides in nuclear industrial, research, and weapon facilities as well as following accidental release. Actinide physicochemical properties will determine in part bioavailability and internal contamination levels. The aim of this work was to develop and validate a new approach to predict actinide bioavailability recovered by filter swipe tests. As proof of concept and to simulate a routine or an accidental situation, filter swipes were obtained from a nuclear research facility glove box. A recently-developed biomimetic assay for prediction of actinide bioavailability was adapted for bioavailability measurements using material obtained from these filter swipes. In addition, the efficacy of the clinically-used chelator, diethylenetriamine pentaacetate (Ca-DTPA), to enhance transportability was determined. This report shows that it is possible to evaluate physicochemical properties and to predict bioavailability of filter swipe-associated actinides.