As the global push for sustainable urban development progresses, this study, set against the backdrop of Hangzhou City, one of China’s megacities, addressed the conflict between urban expansion and the occurrence of urban geological hazards. Focusing on the predominant geological hazards troubling Hangzhou—urban road collapse, land subsidence, and karst collapse—we introduced a Categorical Boosting-SHapley Additive exPlanations (CatBoost-SHAP) model. This model not only demonstrates strong performance in predicting the selected typical urban hazards, with area under the curve (AUC) values reaching 0.92, 0.92, and 0.94, respectively, but also, through the incorporation of the explainable model SHAP, visually presents the prediction process, the interrelations between evaluation factors, and the weight of each factor. Additionally, the study undertook a multi-hazard evaluation, producing a susceptibility zoning map for multiple hazards, while performing tailored analysis by integrating economic and population density factors of Hangzhou. This research enables urban decision makers to transcend the “black box” limitations of machine learning, facilitating informed decision making through strategic resource allocation and scheduling based on economic and demographic factors of the study area. This approach holds the potential to offer valuable insights for the sustainable development of cities worldwide.
Read full abstract