As the focus of conventional oil and gas exploration is changing from shallow to deep layers, the identification of deep effective reservoirs is crucial to exploration and development. In this paper, based on the geological anatomy of oil and gas reservoirs, a new discriminatory criterion and evaluation method for effective reservoirs is proposed in combination with the analysis of reservoir formation dynamics mechanism. The results show that the hydrocarbon properties of the reservoir vary with the ratio of the capillary force between the sandstone reservoir and its surrounding rock. The effective reservoir is discriminated and the reservoir quality is evaluated based on the capillary force and depth of the surrounding media and the sandstone reservoir for adjacent plates. When the capillary force ratio is greater than 0.6, fewer effective reservoirs are developed. The effective reservoir is determined by the capillary force ratio of the sandstone reservoir and the surrounding rock medium to mechanically explain the geological phenomenon that low-porosity reservoirs can also accumulate hydrocarbons. Our findings have significant guiding value for Paleogene oil and gas exploration in the Zhu I depression of Pearl River Mouth Basin. Cited as: Yu, S., Wang, C., Chen, D., Guo, B., Cai, Z., Xu, Z. Criteria and favorable distribution area prediction of Paleogene effective sandstone reservoirs in the Lufeng Sag, Pearl River Mouth Basin. Advances in Geo-Energy Research, 2022, 6(5): 388-401. https://doi.org/10.46690/ager.2022.05.04