Andosols, distributed widely around the Pacific basin, have unique soil–water and solute transport properties because of their stepwise water retention curves and high anion-adsorption capacity. The model modification and verification for these properties are crucial for evaluating the potential for improved agricultural management (e.g., using organic matter instead of inorganic fertilizer) to reduce N loss from the soils. Here, we improved an existing biogeochemical model, LEACHM, to predict long-term N leaching from Andosols amended with composted manure, without optimization to fit measured field data. The modified model was verified by observations from a 5.6-year lysimeter experiment with different rates of inorganic N fertilizer plus composted manure (100 + 0, 75 + 25, or 25 + 75%) of two different types (cattle, swine) on lettuce, sorghum (as a catch crop), and Chinese cabbage in rotation. Incorporation of Durner’s bimodal model dramatically improved predictions of drainage water volume and evapotranspiration. The non-linear Langmuir adsorption isotherms for soil NH4 + and NO3 − improved model performance in simulating crop N uptake and N leaching loss. The RMSE, R2, and index of Agreement were evaluated as satisfactory in all lysimeters. Our model explained reasonably well that improved agricultural management decreased in current available N addition rates by 8.82–35.6% and reduced in the yearly averaged NO3 leaching by 8.70–41.8%. A modified model relating soil hydraulic properties and N adsorption properties could thus accurately predict N leaching under different long-term N application rates/types, and could be useful for supporting agricultural management decisions in cropped Andosols.
Read full abstract