Prolonged consumption of animal-derived foods containing high levels of lincomycin (LIN) residues can adversely impact human health. Therefore, it is essential to develop specific antibodies and immunoassay methods for LIN. This study utilized computational chemistry to predict the efficacy of LIN haptens prior to chemical synthesis, with subsequent confirmation obtained through an immunization experiment. A hybridoma cell line named LIN/1B11 was established, which is specific to LIN. The optimized indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) method exhibited high specificity for detecting LIN residues, with an IC50 value of 0.57 ± 0.03 µg/kg. The method effectively detected LIN residues in pork and milk samples, achieving a limit of detection (LOD) ranging from 0.81 to 1.20 µg/kg and a limit of quantification (LOQ) ranging from 2.09 to 2.29 µg/kg, with recovery rates between 81.9% and 108.8%. This study offers a valuable tool for identifying LIN residues in animal-derived food products. Furthermore, the efficient hapten prediction method presented herein improves antibody preparation efficiency and provides a simple method for researchers in screening haptens.
Read full abstract