Cleft lip and palate (CLP) are the most common congenital craniofacial deformities that can cause a variety of dental abnormalities in children. The purpose of this study was to predict the maxillary arch growth and to develop a neural network logistic regression model for both UCLP and non-UCLP individuals. This study utilizes a novel method incorporating many approaches, such as the bootstrap method, a multi-layer feed-forward neural network, and ordinal logistic regression. A dataset was created based on the following factors: socio-demographic characteristics such as age and gender, as well as cleft type and category of malocclusion associated with the cleft. Training data were used to create a model, whereas testing data were used to validate it. The study is separated into two phases: phase one involves the use of a multilayer neural network and phase two involves the use of an ordinal logistic regression model to analyze the underlying association between cleft and the factors chosen. The findings of the hybrid technique using ordinal logistic regression are discussed, where category acts as both a dependent variable and as the study's output. The ordinal logistic regression was used to classify the dependent variables into three categories. The suggested technique performs exceptionally well, as evidenced by a Predicted Mean Square Error (PMSE) of 2.03%. The outcome of the study suggests that there is a strong association between gender, age, and cleft. The difference in width and length of the maxillary arch in UCLP is mainly related to the severity of the cleft and facial growth pattern.