During prenatal follow-up of twin pregnancies, accurate identification of birthweight and birthweight discordance is important to identify the high-risk group and plan perinatal care. Unfortunately, prenatal evaluation of birthweight discordance by 2-dimensional ultrasound has been far from optimal. The objective of the study was to prospectively compare estimates of fetal weight based on 2-dimensional ultrasound (ultrasound-estimated fetal weight) and magnetic resonance imaging (magnetic resonance-estimated fetal weight) with actual birthweight in women carrying twin pregnancies. Written informed consent was obtained for this ethics committee-approved study. Between September 2011 and December 2015 and within 48 hours before delivery, ultrasound-estimated fetal weight and magnetic resonance-estimated fetal weight were conducted in 66 fetuses deriving from twin pregnancies at 34.3-39.0 weeks; gestation. Magnetic resonance-estimated fetal weight derived from manual measurement of fetal body volume. Comparison of magnetic resonance-estimated fetal weight and ultrasound-estimated fetal weight measurements vs birthweight was performed by calculating parameters as described by Bland and Altman. Receiver-operating characteristic curves were constructed for the prediction of small-for-gestational-age neonates using magnetic resonance-estimated fetal weight and ultrasound-estimated fetal weight. For twins 1 and 2 separately, the relative error or percentage error was calculated as follows: (birthweight - ultrasound-estimated fetal weight (or magnetic resonance-estimated fetal weight)/birthweight)× 100 (percentage). Furthermore, ultrasound-estimated fetal weight, magnetic resonance-estimated fetal weight, and birthweight discordance were calculated as 100× (larger estimated fetal weight-smaller estimated fetal weight)/larger estimated fetal weight. The ultrasound-estimated fetal weight discordance and the birthweight discordance were correlated using linear regression analysis and Pearson's correlation coefficient. The same was done between the magnetic resonance-estimated fetal weight and birthweight discordance. To compare data, the χ2, McNemar test, Student t test, and Wilcoxon signed rank test were used as appropriate. We used the Fisher r-to-z transformation to compare correlation coefficients. The bias and the 95% limits of agreement of ultrasound-estimated fetal weight are 2.99 (-19.17% to 25.15%) and magnetic resonance-estimated fetal weight 0.63 (-9.41% to 10.67%). Limits of agreement were better between magnetic resonance-estimated fetal weight and actual birthweight as compared with the ultrasound-estimated fetal weight. Of the 66 newborns, 27 (40.9%) were of weight of the 10th centile or less and 21 (31.8%) of the fifth centile or less. The area under the receiver-operating characteristic curve for prediction of birthweight the 10th centile or less by prenatal ultrasound was 0.895 (P < .001; SE, 0.049), and by magnetic resonance imaging it was 0.946 (P < .001; SE, 0.024). Pairwise comparison of receiver-operating characteristic curves showed a significant difference between the areas under the receiver-operating characteristic curves (difference, 0.087, P= .049; SE, 0.044). The relative error for ultrasound-estimated fetal weight was 6.8% and by magnetic resonance-estimated fetal weight, 3.2% (P < .001). When using ultrasound-estimated fetal weight, 37.9% of fetuses (25 of 66) were estimated outside the range of ±10% of the actual birthweight, whereas this dropped to 6.1% (4 of 66) with magnetic resonance-estimated fetal weight (P < .001). The ultrasound-estimated fetal weight discordance and the birthweight discordance correlated significantly following the linear equation: ultrasound-estimated fetal weight discordance= 0.03+ 0.91× birthweight (r= 0.75; P < .001); however, the correlation was better with magnetic resonance imaging: magnetic resonance-estimated fetal weight discordance= 0.02+ 0.81× birthweight (r= 0.87; P < .001). In twin pregnancies, magnetic resonance-estimated fetal weight performed immediately prior to delivery is more accurate and predicts small-for-gestational-age neonates significantly better than ultrasound-estimated fetal weight. Prediction of birthweight discordance is better with magnetic resonance imaging as compared with ultrasound.
Read full abstract