A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive. In this study, a high-throughput sequencing of anthers at different developmental stages in Arabidopsis identified 1283 lncRNAs including 524 differentially expressed lncRNAs (DELs). Most of these DELs exhibited positive correlations with the expression patterns of adjacent protein-coding genes. Weighted gene co-expression network analysis (WGCNA) revealed that protein-coding genes targeted by DELs in four modules related to the tetrad stage were associated with functions such as pollen wall formation, pollen germination, or pollen tube growth, respectively. Furthermore, five, 10, and 11 lncRNAs were predicted as miRNAs' endogenous target mimics (eTMs), precursors, and natural antisense transcripts of pri-miRNA, respectively. Remarkably, the lncRNA, host gene of ath-miR167a (ath-miR167aHG), predicted as the precursor of miR167a, was selected for function validation. Its overexpression resulted in the up-regulation of miR167a and the subsequent down-regulation of miR167a's target genes ARF6 and ARF8, demonstrating a functional interaction between ath-miR167aHG and miR167a. The transgenic plants showed delayed flowering, shorter filaments, abnormal anther dehiscence, and undeveloped siliques ultimately, suggesting a role of ath-miR167aHG in male reproductive development. Collectively, our research shed new light on the functions of lncRNAs in male reproductive development and uncovered the unique interactions between lncRNAs and miRNAs.
Read full abstract