In (Isett, Regularity in time along the coarse scale flow for the Euler equations, 2013), the first author proposed a strengthening of Onsager’s conjecture on the failure of energy conservation for incompressible Euler flows with Holder regularity not exceeding \({1/3}\). This stronger form of the conjecture implies that anomalous dissipation will fail for a generic Euler flow with regularity below the Onsager critical space \({L_t^\infty B_{3,\infty}^{1/3}}\) due to low regularity of the energy profile. This paper is the first and main paper in a series of two, the results of which may be viewed as first steps towards establishing the conjectured failure of energy regularity for generic solutions with Holder exponent less than \({1/5}\). The main result of the present paper shows that any given smooth Euler flow can be perturbed in \({C^{1/5-\epsilon}_{t,x}}\) on any pre-compact subset of \({\mathbb{R}\times \mathbb{R}^3}\) to violate energy conservation. Furthermore, the perturbed solution is no smoother than \({C^{1/5-\epsilon}_{t,x}}\). As a corollary of this theorem, we show the existence of nonzero \({C^{1/5-\epsilon}_{t,x}}\) solutions to Euler with compact space-time support, generalizing previous work of the first author (Isett, Holder continuous Euler flows in three dimensions with compact support in time, 2012) to the nonperiodic setting.
Read full abstract