Based on the classical theory of thin plate and Biot theory, a precise model of the transverse vibrations of a thin rectangular porous plate is proposed. The first order differential equations of the porous plate are derived in the frequency domain. By considering the coupling effect between the solid phase and the fluid phase and without any hypothesis for the fluid displacement, the model presented here is rigorous and close to the real materials. Owing to the use of extended homogeneous capacity precision integration method and precise element method, the model can be applied in higher frequency range than pure numerical methods. This model also easily adapts to various boundary conditions. Numerical results are given for two different porous plates under different excitations and boundary conditions.
Read full abstract