Zearalenone (ZEN), a ubiquitous mycotoxin that widely occurs in grain and foodstuff may induce serious toxic effects after accumulation in vivo. Melanoidins (MLDs) have shown multiple bio-functional properties such as antioxidant, anti-bacterial and prebiotic activities. Black garlic exhibits several advantages over fresh garlic related to health improvement. In this study, the alleviative effects of black garlic MLDs on ZEN-induced toxicity and the potential mechanisms were studied using zebrafish embryonic developmental model. The results showed that MLDs restored the ZEN-induced adverse influences on zebrafish embryonic development, including delay in hatching time, morphological abnormality and the impairment of nervous development. Further studies showed that MLDs significantly inhibited the ZEN-induced production of reactive oxygen species (ROS) and enhanced the intrinsic antioxidant ability by increasing the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) and the content of glutathione (GSH). In addition, co-exposure of MLDs significantly inhibited the ZEN-stimulated cellular apoptosis in zebrafish larvae through down-regulation of pro-apoptotic genes of bax, caspase-3 and caspase-9 and up-regulation of anti-apoptotic gene bcl-2. Moreover, MLDs inhibited the in vivo accumulation of ZEN in zebrafish larvae. To sum up, MLDs attenuated the ZEN-induced zebrafish embryonic developmental toxicity through suppression of the oxidative stress and intervention on mitochondria apoptosis pathway as well as inhibiting the absorption of ZEN in zebrafish embryos/larvae. The results suggest that black garlic MLDs have potential to be used as a functional ingredient against the adverse effects of exogenous toxins.
Read full abstract