Most avian neurogenesis studies focused on the song control system and little attention has been given to non-song birds such as the Japanese quail. However, the only few neurogenesis studies in quails mainly focused on the sex steroid sensitive areas of the brain such as the medial preoptic and lateral septal nuclei. Despite the important role the quail telencephalon plays in filial imprinting and passive avoidance learning, neurogenesis in this structure has been completely overlooked. The aim of this study was therefore to quantitatively determine how DCX expression in the Japanese quail telencephalon changes with post hatching age (3–12 weeks) and life history stage. In this study, DCX was used as a proxy for neuronal incorporation. Bipolar and multipolar DCX immunoreactive cells were observed in the entire telencephalon except for the entopallium and arcopallium. In addition, DCX expression in all the eight telencephalic areas quantified was strongly negatively correlated with post-hatching age. Furthermore, numbers of bipolar and multipolar DCX immunoreactive cells were higher in the juvenile compared to subadult and adult quails. In conclusion, neuronal incorporation in the quail telencephalon is widespread but it declines with post hatching age. In addition, the most dramatic decline in neuronal incorporation in the telencephalic areas quantified takes place just after the birds have attained sexual maturity.