For high speed and high efficiency machining, the spindle of modern machine tools simultaneously requires high speed and high stiffness characteristics, and its range of use rotation is becoming wider. Both heavy cutting at low speed and light cutting at high speed must be carried out successively in series with a single machine tool spindle. As such, many studies are being carried out on variable preload control methods that apply a preload to a spindle rolling bearing, as an alternative to the existing fixed position preload and constant pressure preload methods. This paper introduces a newly structured variable preload control device that can arbitrarily adjust the preload applied to spindles employing a rolling bearing. The device controls the coil current on an electromagnet and thereby uses the magnetic force between the electromagnet and a magnetic substance to arbitrarily control the preload applied to the rolling bearing during operation. A prototype for the variable preload control device of the proposed structure was created and a functionality test was then carried out with a test bench prepared using a load cell. The operating principle of the proposed device was verified and the interrelationships between the coil current on the electromagnet and the preload applied to rolling bearing were analyzed through the functionality test. Lastly, the fabricated variable preload control device was applied to a prototype of a spindle system, and a rigidity test was carried out. The test results confirmed that the variable preload control device operates properly and smoothly.
Read full abstract