Extreme values of wave and whipping bending moments are important in structural design of large containerships. Since the extreme values of these two, partially correlated processes do not occur at the same time instant and even at the same environmental conditions, it is necessary to combine them by using probabilistic load combination methods. The correlation analysis between wave and whipping bending moments is performed and a practical method for calculation of the most probable load combination factor between considered bending moments is presented. Short-term load combination factors are calculated by reconstruction of the signal from the frequency domain solution. Results are validated by comparison with model test data of the 9400-TEU containership for various sea states and speeds and heading angles. Practical regression equations for estimation of the most probable short-term load combination factor are formulated. Regression equations are then used in the computation of the long-term distribution of combined bending moment. The procedure is demonstrated on the example of the two large containerships.