In several sensory systems, tachykinin- and opioid-expressing neurons functionally interact and influence the processing of afferent information. To determine whether a similar relationship exists for the processing of general and special (gustatory) visceral afferent information, the present study mapped the distributions of these two neuronal phenotypes within the nucleus of the solitary tract (NST) of the hamster by employing a combination of immuno- and in situ hybridization histochemistry (ISHH). The hamster was chosen because it is frequently used as a model in taste studies, yet there is a relative dearth of data about peptide expression or the classical neurotransmitters in the brainstem of this animal. The immunohistochemical analyses employed 2 highly selective antisera directed towards the prototypical tachykinin and opioid peptides, i.e. substance P (SP) and methionine enkephalin (ENK), respectively. Intense staining of fibers and preterminal/terminal puncta was concentrated in the rostral pole or gustatory zone of the NST. SP-, but not ENK-like immunoreactivity was also observed in long courses of axon bundles traversing the brainstem enroute to the NST. Local application of colchicine engendered the appearance of a moderate number of SP-positive somata that were mostly clustered in the medial, central and intermediate subnuclei, as well as being scattered throughout the remainder of the NST, including the gustatory zone. A low number of isolated ENK-positive somata were also observed throughout the NST. The somal areas of the SP- and ENK-positive somata averaged 86.3 and 81.8 μm 2, respectively. The ISHH studies were performed using 2 selective oligodeoxynucleotide probes with complementary sequences to mRNAs encoding γ-preprotachykinin (PPT) and preproenkephalin (PPE) molecules. Overall, the cellular expression of PPT mRNA within the NST corresponded both in distribution and in number to those identified by immunohistochemical analyses using anti-SP serum. In contrast, ISHH analyses monitored a significantly greater number of PPE- expressing somata in the medial, central, intermediate and ventrolateral nuclei than were ENK immunoreactive. These findings indicate that tachykinin and opioid peptide phenotypes are represented in neurons throughout the hamster NST and suggest a functional role for PPT- and PPE-related peptide forms in the modulation of afferent general visceral and gustatory information.