Magnetic force microscopy (MFM) enables mapping local magnetic fields across a sample surface with nanoscale resolution. To perform MFM, an atomic force microscopy (AFM) probe whose tip has been magnetized vertically (i.e., perpendicular to the probe cantilever) is oscillated at a fixed height above the sample surface. The resultant shifts in the oscillation phase or frequency, which are proportional to the magnitude and sign of the vertical magnetic force gradient at each pixel location, are then tracked and mapped. Although the spatial resolution and sensitivity of the technique increases with decreasing lift height above the surface, this seemingly straightforward path to improved MFM images is complicated by considerations such as minimizing topographical artifacts due to shorter range van der Waals forces, increasing the oscillation amplitude to further improve sensitivity, and the presence of surface contaminants (in particular water due to humidity under ambient conditions). In addition, due to the orientation of the probe's magnetic dipole moment, MFM is intrinsically more sensitive to samples with an out-of-plane magnetization vector. Here, high-resolution topographical and magnetic phase images of single and bicomponent nanomagnet artificial spin-ice (ASI) arrays obtained in an inert (argon) atmosphere glovebox with <0.1 ppm O2 and H2O are reported. Optimization of lift height and drive amplitude for high resolution and sensitivity while simultaneously avoiding the introduction of topographical artifacts is discussed, and detection of the stray magnetic fields emanating from either end of the nanoscale bar magnets (~250 nm long and <100 nm wide) aligned in the plane of the ASI sample surface is shown. Likewise, using the example of a Ni-Mn-Ga magnetic shape memory alloy (MSMA), MFM is demonstrated in an inert atmosphere with magnetic phase sensitivity capable of resolving a series of adjacent magnetic domains each ~200 nm wide.
Read full abstract