Dynorphin, an endogenous opioid, may contribute to secondary nervous tissue damage following spinal cord injury. The temporal and spatial distribution of preprodynorphin (PPD) mRNA expression in the injured rat spinal cord was examined by in situ hybridization. Rats were subjected to traumatic spinal cord injury at the T13 spinal segment using the weight-drop method. Motor function of these rats was evaluated by their ability to maintain their position on an inclined plane. Two double-labeling experiments revealed that increased PPD mRNA and dynorphin peptide expression were found exclusively in dorsal horn neurons. Neurons exhibiting an increase in the level of PPD mRNA were concentrated in the superficial laminae and the neck of dorsal horn within several spinal segments from the epicenter of the injury at 24 and 48 h after injury. A number of neurons showing increased PPD mRNA were found in gray matter adjacent to the injury areas. Segments caudal to the injury site exhibited a long-lasting elevation of PPD mRNA in neurons, compared to the rostral segments. The number of neurons expressing PPD mRNA in each rat was significantly positively correlated with its motor dysfunction. These findings suggest that increased expression of dynorphin mRNA and peptide in dorsal horn neurons occurs after traumatic spinal cord injury. This also supports the hypothesis that the dynorphin has a pathological role in secondary tissue damage and neurological dysfunction after spinal cord injury.
Read full abstract