BackgroundThe clinical manifestation of autism spectrum disorder (ASD) is linked to the disruption of fundamental neurodevelopmental pathways. Emerging evidences claim to have an upregulation of canonical Wnt/β-catenin pathway while downregulation of PPARγ pathway in ASD. This study aims to investigate the therapeutic potential of pioglitazone, a PPARγ agonist, in rat model of ASD. The study further explores the possible role of PPARγ and Wnt/β-catenin pathway and their interaction in ASD by using their modulators. Material and methodsPregnant female Wistar rats received 600 mg/kg of valproic acid (VPA) to induce autistic symptoms in pups. Pioglitazone (10 mg/kg) was used to evaluate neurobehaviors, relative mRNA expression of inflammatory (IL-1β, IL-6, IL-10, TNF-α), apoptotic markers (Bcl-2, Bax, & Caspase-3) and histopathology (H&E, Nissl stain, Immunohistochemistry). Effect of pioglitazone was evaluated on Wnt pathway and 4 μg/kg dose of 6-BIO (Wnt modulator) was used to study the PPARγ pathway. ResultsASD model was established in pups as indicated by core autistic symptoms, increased neuroinflammation, apoptosis and histopathological neurodegeneration in cerebellum, hippocampus and amygdala. Pioglitazone significantly attenuated these alterations in VPA-exposed rats. The expression study results indicated an increase in key transcription factor, β-catenin in VPA-rats suggesting an upregulation of canonical Wnt pathway in them. Pioglitazone significantly downregulated the Wnt signaling by suppressing the expression of Wnt signaling-associated proteins. The inhibiting effect of Wnt pathway on PPARγ activity was indicated by downregulation of PPARγ-associated protein in VPA-exposed rats and those administered with 6-BIO. ConclusionIn the present study, upregulation of canonical Wnt/β-catenin pathway was demonstrated in ASD rat model. Pioglitazone administration significantly ameliorated these symptoms potentially through its neuroprotective effect and its ability to downregulate the Wnt/β-catenin pathway. The antagonism between the PPARγ and Wnt pathway offers a promising therapeutic approach for addressing ASD.