The intelligent soft open point (SOP) has powerful power flow regulation capabilities in the distribution network. If applied to the distribution network, it can flexibly cope with the output uncertainty of unmanageable distributed energy sources. However, considering the investment, operation, and maintenance costs, as well as the assistance of reactive power equipment, the site selection and capacity determination of SOP have become an urgent problem to be solved. This article proposes the optimal configuration strategy of SOP in a flexible interconnected distribution network, taking into account the features of distributed generation and reactive power sources. Firstly, based on the unpredictability of DG output, this paper uses improved sensitivity analysis to determine the optimal SOP installation location. Subsequently, with the optimization objective of minimizing the annual cost of the distribution network, this paper considers the characteristics of DGs, CBs, and OLCTs and uses second-order cone programming to optimize and solve SOP capacity under constraints such as trends. Finally, in the enhanced IEEE 33-node distribution system model, the effects of different scenarios on node voltage, reactive power components, and SOP location and capacity are compared.
Read full abstract