Out of 29 plant species taken into consideration for biodiversity investigations, the present study screened out Cyperus rotundus L., Calotropis procera (Aiton) W.T. Aiton, Croton bonplandianus Baill., Eclipta prostrata (L.) L., and Vernonia cinerea (L.) Less. as the most suitable metal-tolerant plant species (high relative density and frequency) which can grow on metal-laden fly ash (FA) lagoon. Total (aqua-regia), residual (HNO3) and plant available (CaCl2) metal concentrations were assessed for the clean-up of metal-contaminated FA disposal site using naturally colonized plants. The total metal concentration (in mg kg-1) in FA followed an order of Mn (229.8)>Ni (228.4)>Zn (89.4)>Cr (61.2)>Pb (56.6)>Cu (51.5)>Co (41.9)>Cd (9.7). The HNO3- and CaCl2-extracted metals were 0.57-15.68% and 0.03-7.82% of the total metal concentration, respectively. The concentration of Ni and Cr in FA in the present study was highest among the previously studied Indian and average world power plants and Cd, Ni, and Cr were above soil toxicity limit. The variation in total, residual, and plant-available metal (single extraction) concentration indicated the presence of different proportions of metals in FA lagoon which affects the metal uptake potential of the vegetation growing on it. It has been reported that plant-available metal extractant (CaCl2) is the most suitable extractant for assessment of metal transfer from soil to plant. However in the present study, Spearman's correlation showed best significant correlation between total metal concentration in FA and shoot metal concentration (r=0.840; p<0.01) which suggest aqua-regia as the best extractant for understanding the bioavailability and transfer of metal, and in calculation of BCF for moderately contaminated site. It can be stated that plant-available extractant is not always suitable for understanding the availability of metal, but total metal concentration can provide a better insight especially for moderate or low metal-contaminated sites. Principle component analysis revealed that all the plants showed positive correlation with Co and Cd which suggest its subsequent uptake in root and shoot. The biological indices (BCF, BAF, and TF) revealed that E. prostrata (10mg Cd kg-1) and C. procera (3.5mg Cd kg-1) can be utilized efficiently for the phytoextraction of Cd and phytostabilization of other potentially toxic metals (Pb, Cr, and Co) from FA lagoon. All the plants were tolerant to Pb pollution (TF>1, BAF>1, and BCF>1); hence, there was a negligible translocation of Pb to the aerial tissues of these plants which shows their suitability in phytostabilization. In addition, V. cinerea accumulated elevated concentration of potentially toxic Cr (50mg Cr kg-1) and Ni (67mg Ni kg-1) which could also help in the phytoremediation of FA lagoon.
Read full abstract