Polychlorinated biphenyl (PCB)-degradative genes, under the control of a constitutive promoter, were cloned into a broad-host-range plasmid and a transposon. These constructs were inserted into a surfactant-utilizing strain, Pseudomonas putida IPL5, to create a field application vector (FAV) in which a surfactant-degrading organism cometabolizes PCB. By utilizing a surfactant not readily available to indigenous populations and a constitutive promoter, selective growth and PCB-degradative gene expression are decoupled from biphenyl. Since PCB degradation via the biphenyl degradation pathway is nonadaptive in the absence of biphenyl, there is no selective pressure for PCB gene maintenance. The recombinant strains exhibited degradative activity against 25 of 33 PCB congeners in Aroclor 1248 in the absence of biphenyl. Whole-cell enzyme assays indicated that PCB-degradative activity of a recombinant strain carrying the PCB genes on a plasmid was approximately twice that of the same strain carrying the PCB genes on a transposon. Plasmid loss rates in the absence of antibiotic selection averaged 7.4% per cell division and were highly variable between experiments. Surfactant-amended slurries of PCB-contaminated electric power plant substation soil were inoculated with approximately 10(5) recombinant cells per ml. The populations of the added strains increased to greater than 10(9) cells per ml in 2 days, and cell growth coincided with PCB degradation. By 15 days, 50 to 60% of the indicator congener 2,3,2',5'-tetrachlorobiphenyl was degraded. The effectiveness of PCB degradation by the plasmid-containing strain depended on plasmid stability. The transposon-encoded PCB genes were much more stable, and in surfactant-amended soil slurries, PCB degradation was more consistent between experiments.
Read full abstract