Fuel and energy are basic resources necessary to meet a country’s socioeconomic development needs; further, countries rich in these resources have the best premise for meeting the inputs of an economic system; however, this also poses many political challenges and threats to national security. Vietnam is located in the Southeast Asian monsoon-humid tropical region and has diverse fuel-energy resources such as coal, petroleum, and hydropower, along with renewable energy sources such as solar energy, biomass energy, and geothermal energy. However, the reality of economic development in recent years shows complex fluctuations in fuel and energy usage, i.e., besides the export of coal and crude oil, Vietnam still has imported processed oil products. To overcome this issue, many hydrogen power plants will be built in the future. This is why we propose fuzzy multicriteria decision-making (FMCDM) for hydrogen power plant site selection in this research. All criteria affecting location selection are determined by experts and literature reviews, and the weight of all criteria are defined by a fuzzy analytic hierarchy process (FAHP). The technique for order of preference by similarity to an ideal solution (TOPSIS) is a multicriteria decision analysis method, which is used for ranking potential locations in the final stage. As a result, the decision-making unit, DMU010 (DMU010), has become the optimal solution for building hydrogen power plants in Vietnam. A multicriteria decision-making (MCDM) model for hydrogen power plant site selection in Vietnam under fuzzy environment conditions is a contribution of this study. This research also provides useful tools for other types of renewable energies in Vietnam and other countries.