Direct borohydride–hydrogen peroxide fuel cells (DBHPFCs) are attractive power sources for space applications. Although the cathode conditions are known to affect the system performance, the effect of the anode conditions is rarely investigated. Thus, in this study, a DBHPFC system was tested under various anode conditions, such as electrocatalyst, fuel concentration, and stabilizer concentration, to investigate their effects on the system performance. A virtual DBHPFC system was analyzed based on the experimental data obtained from fuel cell tests. The anode electrocatalyst had a considerable effect on the mass and electrochemical reaction rate of the fuel cell system, but had minimal effect on the decomposition reaction rate. The NaBH4 concentration greatly influenced the mass and decomposition reaction rate of the fuel cell system; however, it had minimal impact on the electrochemical reaction rate. The NaOH concentration affected the electrochemical reaction rate, decomposition reaction rate, and mass of the fuel cell system. Therefore, the significant effects of the anode conditions on the electrochemical reaction rate, decomposition reaction rate, and mass of the fuel cell system prompt the need for their careful selection through fuel cell tests and system analysis.
Read full abstract