A two-state, master equation-based decision-making model has been shown to generate phase transitions, to be topologically complex, and to manifest temporal complexity through an inverse power-law probability distribution function in the switching times between the two critical states of consensus. These properties are entailed by the fundamental assumption that the network elements in the decision-making model imperfectly imitate one another. The process of subordination establishes that a single network element can be described by a fractional master equation whose analytic solution yields the observed inverse power-law probability distribution obtained by numerical integration of the two-state master equation to a high degree of accuracy.
Read full abstract