AbstractFrequency response analysis is widely used for the offline diagnosis of winding deformations in power transformers. To apply this approach to a working transformer, the magnitude of the response current needs to be measured by using Rogowski coil sensors across a load current. The saturation of the power frequency magnetic field in these current sensors must be prevented to ensure accurate measurement of such small response currents. Here, a method is presented to suppress the power frequency magnetic field using a sensing system including a special connection of three‐phase current sensors based on the sum of the three‐phase power frequency load currents of the transformer being close to zero. Each sensor comprises two secondary coils: a measuring coil and an anti‐saturation coil. The anti‐saturation coils are connected in parallel with one another through small inductors to eliminate the power frequency magnetic field in the cores of the sensors. Theoretical analysis is used to derive a solution for this system. The experimental results verify the proposed method as enabling the sensors to function with a transformer carrying a load current of 2333 A.
Read full abstract