The authors analyzed the state of tool production in Russia. The main manufacturing companies and the main brands of materials used in the production of domestic tools are highlighted. Powder high-speed steels are practically not used in the domestic market, but they are widely distributed in the foreign market of tool steels due to their significant advantages in terms of basic and technological properties (including the possibility of using high-carbon and high-alloy high-speed steels). There is a new group of economically alloyed tungsten-free high-speed steels with a high content of carbon and vanadium, which are practically impossible to manufacture and apply in our traditional technology due to low technological properties. The authors give recommendations on the technology of manufacturing such steels by powder metallurgy and on the modes of their heat treatment. The paper studies a set of properties of these steels, including: basic mechanical properties (hardness, bending strength, toughness, and heat resistance), basic technological properties (pressure, cutting, grinding) and operational properties (evaluated by tool durability during turning). Structural and phase compositions of the steels and their influence on the basic and technological properties were investigated. The compaction mode affects the density of the billets. The paper presents distribution of alloying elements in the microstructure of powder high-speed steel and results of their relative grindability. Also the durability of tools was tested. There are significant advantages of high-carbon high-vanadium high-speed steels, especially in terms of technological properties, compared with traditional high-speed steels. It is possible to produce high-alloy tool steels using inexpensive carbide-forming alloying elements. The steels under consideration can be used to manufacture a wide range of tools, including hot-forming die tools. The use of powder technology opens up the prospect of developing universal economically alloyed powder tool steels.
Read full abstract