Among the AM processes Laser based Powder Bed Fusion (LPBF) technique offers precise and complex geometric fabrication. However, the microstructural and mechanical properties obtained from LPBF process requires further investigation, especially for IN718 superalloys. In this study, various heat treatments were applied to LPBFed Inconel 718 specimens to examine their effects on microstructure, microhardness and wear behavior. Three different heat treatments, each involving varied solutionizing and ageing steps were incorporated. As-printed specimens exhibited distinct fish scale structures with columnar dendrites. Heat treatments effectively dissolved the Laves phase and precipitated strengthening phases like γ′′ and γ′. Microhardness increased significantly after heat treatments, correlating with the formation of strengthening precipitates. Friction and wear tests showed as-printed specimens exhibited higher wear loss (922 ± 13 μm) and coefficient of friction (COF) (0.511 ± 0.07) due to the presence of Laves phase and softer matrix. Heat-treated specimens demonstrated significantly reduced wear loss (262 ± 5 μm) and COF (0.368 ± 0.01), with HT2 showing the best wear resistance attributed to a homogeneous microstructure. SEM analysis of worn surfaces confirmed abrasive and adhesive wear mechanisms in as-printed specimens, while heat-treated specimens exhibited reduced wear with smoother surfaces.
Read full abstract